Cardinality Quantifiers in MLO over Trees
نویسندگان
چکیده
We study an extension of monadic second-order logic of order with the uncountability quantifier “there exist uncountably many sets”. We prove that, over the class of finitely branching trees, this extension is equally expressive to plain monadic second-order logic of order. Additionally we find that the continuum hypothesis holds for classes of sets definable in monadic second-order logic over finitely branching trees, which is notable for not all of these classes are analytic. Our approach is based on Shelah’s composition method and uses basic results from descriptive set theory. The elimination result is constructive, yielding a decision procedure for the extended logic. Furthermore, by the well-known correspondence between monadic second-order logic and tree automata, our findings translate to analogous results on the extension of first-order logic by cardinality quantifiers over injectively presentable Rabin-automatic structures, generalizing the work of Kuske and Lohrey.
منابع مشابه
Expressing Cardinality Quantifiers in Monadic Second-Order Logic over Trees
We study an extension of monadic second-order logic of order with the uncountability quantifier “there exist uncountably many sets”. We prove that, over the class of finitely branching trees, this extension is equally expressive to plain monadic second-order logic of order. Additionally we find that the continuum hypothesis holds for classes of sets definable in monadic second-order logic over ...
متن کاملCombining Theories with Shared Set Operations
Motivated by applications in software verification, we explore automated reasoning about the non-disjoint combination of theories of infinitely many finite structures, where the theories share set variables and set operations. We prove a combination theorem and apply it to show the decidability of the satisfiability problem for a class of formulas obtained by applying propositional connectives ...
متن کاملAdvice Automatic Structures and Uniformly Automatic Classes
We study structures that are automatic with advice. These are structures that admit a presentation by finite automata (over finite or infinite words or trees) with access to an additional input, called an advice. Over finite words, a standard example of a structure that is automatic with advice, but not automatic in the classical sense, is the additive group of rational numbers (Q,+). By using ...
متن کاملExpressing cardinality quantifiers in monadic second-order logic over chains
We study the extension of monadic second-order logic of order with cardinality quantifiers “there exists infinitely many sets” and “there exists uncountably many sets”. On linear orders that require the addition of only countably many points to be complete, we show using the composition method that the second-order uncountability quantifier can be reduced to the first-order uncountability quant...
متن کاملExtending Two-Variable Logic on Trees
The finite satisfiability problem for the two-variable fragment of first-order logic interpreted over trees was recently shown to be ExpSpace-complete. We consider two extensions of this logic. We show that adding either additional binary symbols or counting quantifiers to the logic does not affect the complexity of the finite satisfiability problem. However, combining the two extensions and ad...
متن کامل